

# ST2.1: Essential Skills in Cardiothoracic Surgery

# 18<sup>th</sup> – 19<sup>th</sup> September 2023

Nottingham City Hospital Postgraduate Education Centre

# Programme

**Directors:** 

Keng Ang Consultant Thoracic Surgeon Freeman Hospital, Newcastle

Betsy Evans Consultant Cardiac Surgeon Leeds General Infirmary







### Faculty List

| Cardiac Surgery Faculty      |                                                          |  |
|------------------------------|----------------------------------------------------------|--|
| Ma Consthil Dolooukaansenien | Consultant Cardiac Surgeon                               |  |
| Mr Sendhil Balasubramanian   | University Hospital, Coventry                            |  |
|                              | Consultant Cardiac Surgeon                               |  |
| Mr Tony Walker               | Blackpool Victoria Hospital                              |  |
| Maddauth and Oak mu          | Locum Consultant Cardiac Surgeon                         |  |
| Mr Haytham Sabry             | Liverpool Heart & Chest Hospital                         |  |
|                              | Consultant Cardiac Surgeon                               |  |
| Mr Eshan Senanayake          | Queen Elizabeth Hospital, Birmingham                     |  |
| Malilana a Ohiak             | Senior Clinical Fellow Cardiothoracic Surgery            |  |
| Mr Usman Shah                | Liverpool Heart & Chest Hospital                         |  |
|                              | Surgical Assistant                                       |  |
| Ms Jasmina Djordjevic        | John Radcliffe Hospital, Oxford                          |  |
| Thoracic Surgery Faculty     |                                                          |  |
|                              | Consultant Thoracic Surgeon                              |  |
| Mr Mohammad Hawari           | Nottingham City Hospital, Nottingham                     |  |
| Mr Nilonian Chaudhuri        | Consultant Thoracic Surgeon                              |  |
| Mr Nilanjan Chaudhuri        | St. James University Hospital, Leeds                     |  |
|                              | Consultant Thoracic Surgeon                              |  |
| Mr Mehmood Jadoon            | Nottingham City Hospital                                 |  |
| Ma Olhaina Darahani          | Consultant Thoracic Surgeon,                             |  |
| Mr Silviu Buderi             | Royal Brompton Hospital                                  |  |
| Guest Speakers (TBC)         |                                                          |  |
| Ma Elizabeth Dalahar         | SAC Member, Consultant Thoracic Surgeon & SCTS Education |  |
| Ms Elizabeth Belcher         | Secretary, John Radcliffe Hospital, Oxford               |  |
| Ma Carin Van Daarn           | Consultant Congenital Cardiac Surgeon                    |  |
| Ms Carin Van Doorn           | Leeds General Infirmary                                  |  |



# Day One

| Time          | Session                                                                                                                                  | Faculty                                    | Room            |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|--|
| 08:30 - 08:45 | Registration and Refreshments                                                                                                            |                                            |                 |  |
| 08:45 - 09:00 | Welcome & Rules and regulations                                                                                                          | Betsy Evans, Keng<br>Ang &<br>Sarah Hutton | Reception       |  |
| 09:00 - 09:35 | Cardiac Anatomy: Cardiac chambers & valves                                                                                               | Cardiac faculty                            | Lecture Theatre |  |
| 09:35 - 10:15 | Thoracic Anatomy                                                                                                                         | Thoracic faculty                           | Lecture Theatre |  |
| 10:15 - 10:30 | Refreshments                                                                                                                             |                                            |                 |  |
| 10:30 - 11:30 | Skill stations I - II (60 mins each)                                                                                                     |                                            |                 |  |
|               | I: <b>Cardiac:</b> Saphenous vein harvesting (including endoscopic technique) – Group 1                                                  | Cardiac faculty                            | Skills Lab 2    |  |
|               | II: <b>Thoracic:</b> Chest drainage, VATS port placement and stapling – Group 2                                                          | Thoracic faculty                           | Skills Lab1     |  |
| 11:30 - 11:45 | Refreshments                                                                                                                             |                                            |                 |  |
| 11:45-12:45   | Skill stations III - IV (60 mins each)                                                                                                   |                                            |                 |  |
|               | III: Cardiac: Radial artery harvesting – Group 1                                                                                         | Cardiac faculty                            | Skills Lab 2    |  |
|               | IV: <b>Thoracic:</b> Thoracotomy, principles of lung dissection – Group 2                                                                | Thoracic faculty                           | Skills Lab 1    |  |
| 12:45 - 13:30 | LUNCH                                                                                                                                    |                                            |                 |  |
| 13:30 -14:00  | A: Cardiac Scenarios                                                                                                                     | Cardiac faculty                            |                 |  |
| 14:00 – 14:30 | B: Thoracic Scenarios                                                                                                                    | Thoracic faculty                           |                 |  |
| 14:30 - 14:45 | Refreshments                                                                                                                             |                                            |                 |  |
| 14:45 - 16:10 | Skill stations V - VI (90 mins)                                                                                                          |                                            |                 |  |
|               | V: <b>Cardiac</b> : Median sternotomy & LIMA harvest<br>Coronary Anastomosis; dissection of heart - Group<br>1                           | Cardiac Faculty                            | Skill Lab 1     |  |
|               | VI: <b>Thoracic</b> : Bronchoscopy; Simulation training<br>for cardiothoracic surgery, VATS skills and<br>drainage management, - Group 2 | Thoracic Faculty                           | Skill Lab 2     |  |
| 16:10 - 16:25 | Refreshments                                                                                                                             |                                            |                 |  |
| 16:25 - 16:55 | <b>Cardiac</b> Pre-operative assessment and risk stratification                                                                          | Cardiac Faculty                            | Lecture Theatre |  |



|   | 16:55 - 17:25         | <b>Thoracic</b> Pre-operative assessment and risk stratification | Thoracic Faculty | Lecture Theatre |
|---|-----------------------|------------------------------------------------------------------|------------------|-----------------|
|   | 17:25 - 17:40         | Summary, feedback and close                                      |                  | Lecture Theatre |
| - | 19:30 - Course Dinner |                                                                  |                  |                 |

## Day Two

| Time          | Session                                                                                                                            | Faculty                | Room               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|
| 08:00 - 08:20 | Registration and Refreshments                                                                                                      |                        |                    |
| 08:20 - 08:30 | Re-Introduction to skill stations I                                                                                                | Betsy Evans & Keng Ang | Reception          |
| 08:30 - 09:30 | Skill stations I - II (60 mins each)                                                                                               |                        |                    |
|               | I: <b>Cardiac</b> : Saphenous vein harvesting (including endoscopic technique) – Group 2                                           | Cardiac Faculty        | Skills Lab 2       |
|               | II: <b>Thoracic</b> : Chest drainage, VATS port placement and stapling- Group 1                                                    | Thoracic Faculty       | Skills Lab 1       |
| 09:30 - 09:45 | Refreshments                                                                                                                       |                        |                    |
| 09:45 - 10:45 | Skill stations III - IV (60 mins each)                                                                                             |                        |                    |
|               | III: <b>Cardiac</b> : Radial artery harvesting –<br>Group 2                                                                        | Cardiac Faculty        | Skills Lab 2       |
|               | IV: <b>Thoracic</b> : Thoracotomy, principles of lung<br>dissection – Group 1                                                      | Thoracic Faculty       | Skills Lab 1       |
| 10:45 - 11:00 | Refreshments                                                                                                                       |                        |                    |
| 11:00 - 12:30 | Skill stations V - VI (90 mins)                                                                                                    |                        |                    |
|               | V: <b>Cardiac:</b> Median sternotomy & LIMA harvest<br>Coronary Anastomosis; dissection of heart - Group 2                         | Cardiac Faculty        | Skills Lab 1       |
|               | VI: <b>Thoracic</b> : Bronchoscopy; Simulation training for cardiothoracic surgery, VATS skills and drainage management, - Group 1 | Thoracic Faculty       | Skills Lab 2       |
| 12:30 - 13:30 | Lunch                                                                                                                              |                        |                    |
| 13:30 - 14:00 | Guest Lecture: Congenital Cardiac Surgery                                                                                          | Miss Carin Van Doorn   | Lecture<br>Theatre |
| 14:00 - 14:30 | Guest Lecture: Training, Curriculum, Assessment,<br>Examination, ARCC and the role of SAC                                          | Ms Elizabeth Belcher   | Lecture<br>Theatre |
| 14:30 - 14:45 | Questions and Answers                                                                                                              |                        |                    |



| 14:45 - 15:00 | Refreshments                  |                  |  |
|---------------|-------------------------------|------------------|--|
| 15:00 - 16:00 | Workshops (30 mins each)      |                  |  |
|               | C: Cardiopulmonary Bypass     |                  |  |
|               | Group 1: 15:00 - 15:30        | Cardiac Faculty  |  |
|               | Group 2: 15:30 – 16:00        |                  |  |
|               | D: Thoracic Imaging           |                  |  |
|               | Group 1: 15:00 - 15:30        | Thoracic Faculty |  |
|               | Group 2: 15:30 – 16:00        |                  |  |
| 16:00 – 16:30 | Summary, reflection, feedback | All              |  |

### Learning objectives

#### Cardiac Anatomy

- 1. Understand the surface anatomy of the heart, cardiac valves and great vessels.
- 2. Describe the anatomy of the coronary arteries, including the location, normal course, branches, dominance and variants.
- 3. Understand how to identify the coronary arteries when performing bypass grafting surgery
- 4. Define the anatomy of the coronary venous system, including the location and accompanying arteries.
- 5. Describe the anatomy of the cardiac valves, including contribution of sub-valvular apparatus and aortic root to valve competency.
- 6. Understand the anatomy of the conduction system, including the location and blood supply of nodes, bundles and Purkinje fibres, and where to avoid during surgery.
- 7. Define the anatomy of the cardiac chambers, including embryological origin.
- 8. Describe the anatomy of the pericardium, including the location of the oblique and transverse sinuses.
- 9. Describe the anatomy of the great vessels, including thoracic aorta, pulmonary artery and vena cavae.
- 10. Understand the embryological origin of the heart, including formation of the atrial septum

#### **Conduit Anatomy**

- 1. Describe the anatomy of the left internal mammary artery, including the location, course, branches and nearby structures
- 2. Discuss the difference between a pedicled and skeletonized internal mammary artery
- 3. Define the anatomy of the long saphenous vein, including the location, course, landmarks and nearby structures
- 4. Understand how to identify the sapheno-femoral junction
- 5. Describe the anatomy of the short saphenous vein, including the location, course, landmarks and nearby structures
- 6. Understand the anatomy of the cephalic vein
- 7. Define the anatomy of the radial artery, including the location, course, branches and nearby structures
- 8. Understand the principles of an Allen's test, including palmar arch anatomy
- 9. Briefly describe the anatomy of the inferior epigastric artery and gastro-epiploic artery



ST2.1: Essential Skills in Cardiothoracic Surgery (18 – 19 Sep 2023)

10. Describe the anatomical differences between the internal mammary artery, radial artery and saphenous vein, especially in relation to long-term patency



#### Thoracic Anatomy

- 1. Define the surface anatomy of the thorax and understand its relevance to clinical practice.
- 2. Understand the muscular anatomy of the chest wall in relation to ventilation and thoracic incisions.
- 3. Define the boundaries of the thoracic cavity.
- 4. Define the divisions of the thoracic cavity in relation to mediastinal pathology.
- 5. Describe tracheobronchial anatomy and its variations in relation to single lung ventilation and bronchoscopy.
- 6. Describe the structures of the hilum of both lungs.
- 7. Compare and contrast the gross and segmental anatomy of the right and left lung.
- 8. Describe the relative position of other major structures in the thorax including heart, great vessels, oesophagus, thoracic duct and major nerves.
- 9. Understand the anatomy of lymph nodes in relation to lung cancer staging.
- 10. Describe the origin, insertion, innervation, functions and various openings of the diaphragm.

#### Thoracic Pathology

- 1. Describe the classification and management of lung tumours.
- 2. Discuss the role of surgery in the diagnosis of interstitial lung disease and the management of COPD.
- 3. Describe pulmonary infections including empyema, lung abscess, TB and fungal infection of the lung.
- 4. Describe benign and malignant conditions of the pleura.
- 5. Understand the importance of the anatomy of the mediastinum in relation to the classification of mediastinal pathology.
- 6. Demonstrate understanding of benign and malignant conditions of the oesophagus.
- 7. Discuss the management of pathology of the chest wall including congenital conditions, trauma, primary and secondary tumours.
- 8. Discuss the management of chest trauma.
- 9. Discuss benign and malignant disorders of the diaphragm.
- 10. Describe the commonest congenital conditions of the chest.

#### Pre-operative assessment and risk stratification: Cardiac Surgery

- 1. Understand the important components of a cardiac history, including symptoms, cardiac risk factors and indications for surgery
- 2. Describe how to perform a cardiac examination, including assessment of conduits for bypass grafting
- 3. Define the important investigations that need to be performed prior to a patient undergoing cardiac surgery, including blood tests, chest radiograph, electrocardiogram, echocardiogram and coronary angiogram
- 4. Describe which patients may require further investigation with lung functions tests, arterial blood gases, computed tomography scanning and carotid duplex scanning
- 5. Understand the importance of documentation in the pre-operative assessment process of cardiac surgical patients
- 6. Define the important components of the consent process, including an explanation of the underlying disease, treatment options, risks and benefits of surgery (including risk score)
- 7. Describe the risk scores currently used in clinical practise, including the additive Euroscore, logistic Euroscore, Euroscore II and STS score
- 8. Understand the indications for surgery for coronary artery bypass grafting, including AHA and European guidelines



- 9. Understand the indications for valve surgery, including AHA and European guidelines
- 10. Understand the indications for thoracic aortic surgery, including AHA and European guidelines

#### Cardiopulmonary bypass

- 1. Understand the principles of cardiopulmonary bypass
- 2. Describe the important components of a cardiopulmonary bypass circuit
- 3. Discuss the principles of arterial cannulation, including the advantages and disadvantages of the different options
- 4. Discuss the principles of venous drainage, including the advantages and disadvantages of the different options available for venous cannulation
- 5. Understand the principles of myocardial protection
- Describe the advantages and disadvantages of the different cardioplegia options, including antegrade vs. retrograde, warm vs. cold, blood vs. crystalloid
- 7. Understand the principles of venting and effects of LV distension
- 8. Describe the management of anticoagulation on bypass, including ACT and protamine reactions
- 9. Discuss the important factors to be considered before weaning a patient from cardiopulmonary bypass
- 10. Understand the side effects of cardiopulmonary bypass, including coagulopathy, haemodilution and systemic inflammatory response

#### Pre-operative assessment and risk stratification: Thoracoscore

- 1. Demonstrate familiarity with the British Thoracic Society guidelines for the radical management of patients with primary lung cancer.
- 2. Understand the principles of the tripartite system of assessment for the radical treatment of primary lung cancer.
- 3. Describe the principles of segment counting for the assessment of risk of post-operative dyspnoea following anatomical resection for primary lung cancer.
- 4. Discuss the role of the revised cardiac index in the assessment of cardiac risk in thoracic surgery.
- 5. Describe risk-scoring systems in current practice.
- 6. Discuss the usefulness and limitations of the Thoracoscore risk assessment system.
- 7. Describe the risks of current smoking at time of operation in relation to mortality and morbidity.
- 8. Demonstrate familiarity with alternatives to surgery for patents with primary lung cancer short and long-term advantages and limitations.
- 9. Discuss the risk assessment of patient undergoing operation for benign disease (lung volume reduction surgery, pneumothorax, lung biopsy).
- 10. Discuss the assessment of the risks of morbidity of thoracic surgery.

#### **Cardiothoracic incisions and access**

- 1. Discuss the importance of latissimus dorsi muscle in the classification of thoracotomy incisions.
- 2. Understand the surface anatomy of the chest wall in relation to thoracotomy incisions.
- 3. Discuss procedure specific thoracotomy choice.
- 4. Discuss principles of thoracotomy.
- 5. Describe the principles of VATS port placement.
- 6. Describe the principles of safe conversion to thoracotomy from a VATS procedure.



#### ST2.1: Essential Skills in Cardiothoracic Surgery (18 – 19 Sep 2023)

- 7. Discuss choice of incision for open conversion of VATS procedure.
- 8. Discuss the peri-operative analgesic adjuncts paravertebral versus epidural.
- 9. Discuss the choice of drains number, size, suction versus no suction and time to drain removal.
- 10. Recognise incision specific complications.

#### Median sternotomy and left internal mammary artery harvest

- 1. Describe the anatomy of the sternum and overlying tissues.
- 2. Describe the anatomy of the sternum and overlying tissues.
- 3. Demonstrate the ability to identify the surface landmarks to define the extent of the sternotomy skin incision.
- 4. Understand the principles of identifying the midline and its importance to reduce the risk of sternal dehiscence
- 5. Discuss the different mechanical saws used for sternotomy and principles of how to use them safely
- 6. Discuss the merits of using bone wax for sternal haemostasis
- 7. Describe the anatomy of the left internal mammary artery (and its branches) and surrounding structures, including the phrenic nerve and brachiocephalic vein
- 8. Discuss the principles of identifying the left internal mammary artery, including neurovascular plane
- 9. Understand the principles in dissecting the left internal mammary artery, including the use of diathermy, ligaclip application and blunt dissection
- 10. Demonstrate the principles of left internal mammary artery preparation following harvest, including the use of paparevine
- 11. Understand the principles of haemostasis during sternal opening and left internal mammary artery harvest

#### Thoracic surgery and chest drainage

- 1. Discuss the principles of multi-disciplinary team management.
- 2. Demonstrate the approach to surgical staging of patients with primary NSCLC.
- 3. Demonstrate a logical and flexible approach to anatomical resection.
- 4. Describe the definition of systematic nodal dissection and completeness of resection.
- 5. Define the triangle of safety and the prerequisites of safe chest drain insertion
- 6. Demonstrate familiarity with options for chest drainage number, size, position and time to drain removal.
- 7. Discuss the principles of underwater seal drainage systems.
- 8. Demonstrate familiarity with portable suction drainage systems.
- 9. Demonstrate familiarity with portable valved drainage systems.
- 10. Describe the indications and principles of chest drain removal.

#### Saphenous vein harvest

- 1. Describe the anatomy of the long saphenous vein
- Demonstrate the surface landmarks to help identify the long saphenous vein, including distally (medial malleolus), mid-point (behind patella) and proximally (near sapheno-femoral junction)
- 3. Discuss the factors determining choice of harvest site (ankle, knee, thigh)
- 4. Understand the principles of harvesting the long saphenous vein, including dissection, branch ligation and distraction



- 5. Demonstrate the principles of knot tying
- 6. Be able to determine appropriate quantity and quality of the vein harvested
- 7. Demonstrate the principles of long saphenous vein preparation following harvest
- 8. Demonstrate principles of wound closure following vein harvest
- 9. Discuss the factors that determine whether a drain needs to be inserted following vein harvest
- 10. Understand the principles of short saphenous vein harvesting

#### Bronchoscopy, VATS port placement and stapling

- 1. Discuss safe management of the shared airway.
- 2. Be able to identify of the components of a rigid bronchoscope.
- 3. Demonstrate safe passage of a bronchoscope and identify the anatomy at each stage.
- 4. Describe the complications of bronchoscopy and strategies for avoidance.
- 5. Demonstrate the principles of safe port placement.
- 6. Discuss factors influencing choice of port.
- 7. Discuss procedure specific port placement.
- 8. Demonstrate principles of stapling technology.
- 9. Describe factors influencing choice of stapler.
- 10. Discuss factors influencing staplers versus hand-sewn technique.

#### Radial artery harvest

- 1. Describe the anatomy of the radial artery
- 2. Understand the advantages and disadvantages of using a radial artery as a bypass conduit
- 3. Discuss in which patients a radial artery would be used
- 4. Describe the principles of the Allen's test
- 5. Demonstrate the surface landmarks to help identify the radial artery and the incision used for radial artery harvest
- 6. Understand the principles of harvesting the radial artery, including dissection, branch ligation and distraction
- 7. Discuss the importance of using vessel loops / radial artery spasm
- 8. Demonstrate the principles of radial artery preparation following harvest
- 9. Demonstrate principles of wound closure following radial artery harvest
- 10. Discuss the evidence for the use of a radial artery, including RAPS and RAPCO trials

#### Aortic cannulation and decannulation

- 1. Understand the factors that determine the site of aortic cannulation (especially in relation to calcification, top ends, aortotomy, aortic cross-clamp and aortic arch surgery)
- 2. Describe the steps required before performing aortic cannulation
- 3. Demonstrate the principles of placing the aortic purse strings
- 4. Demonstrate the principles of inserting and securing the aortic cannula
- 5. Demonstrate the principles of connecting the aortic cannula to the CPB circuit
- 6. Discuss the signs of aortic cannula malposition
- 7. Discuss the signs of iatrogenic aortic dissection following aortic cannulation and how to manage it
- 8. Understand the significance of high line pressures following aortic cannulation



- 9. Understand the factors that determine the timing of aortic decannulation
- 10. Demonstrate the principles of aortic decannulation

#### **Angiography**

- 1. Understand the principles of performing coronary angiography, including the different projections
- 2. Describe the standard views of the left coronary arterial system
- 3. Describe the standard views of the right coronary arterial system
- 4. Define a flow-limiting or significant coronary artery lesion, including an explanation of luminal diameter versus crosssectional area
- 5. Define the different grades of TIMI coronary flow
- 6. Understand the principles of fractional flow reserve (FFR)
- 7. Understand the principles of intravascular ultrasound (IVUS)
- 8. Demonstrate the principles of assessing global and regional wall motion abnormalities using a ventriculogram
- 9. Understand the principles of assessing the severity of mitral regurgitation using a ventriculogram
- 10. Demonstrate the principles of assessing the presence of proximal aortic pathology and the severity of aortic regurgitation using an aortogram

#### Echocardiography and electrocardiography

- 1. Understand the principles of performing echocardiography, including 2D, M-mode, Doppler and 3D
- 2. Describe the standard 2D echocardiographic views, including parasternal long axis, parasternal short axis, apical 4 chamber, apical 5 chamber, apical long axis 2 chamber, subcostal and suprasternal views
- 3. Understand the difference between continuous wave and pulsed wave Doppler, including the principles of aliasing and colour flow Doppler
- 4. Demonstrate the principles of assessing global and regional wall motion abnormalities on echocardiography, including normal echocardiographic values for cardiac chamber size and function
- 5. Understand the principles of quantifying valvular stenosis and regurgitation, including Bernoulli equation, Continuity equation, pressure half-time, vena contracta, PISA, AHA guidelines
- 6. Describe the standard trans-oesophageal echocardiographic views
- 7. Understand the principles of performing electrocardiography
- 8. Describe the important components when assessing an ECG, including rate, rhythm, axis and the individual components of the ECG trace
- 9. Understand the principles of assessing arrhythmias on ECG, including heart block, bundle branch block, atrial / ventricular tachycardia / fibrillation
- 10. Recognize the signs of myocardial ischaemia and infarction on ECG

#### Chest x-rays

- 1. Discuss the characteristics of PA versus AP CXR.
- 2. Understand the terms inspiration, penetration, and rotation as they apply to determining a technically adequate film.
- Understand basic anatomy of the fissures of the lungs, heart borders, bronchi, and vasculature visible on a chest xray.
- 4. Develop a consistent and thorough technique for the interpretation of a CXR.



- 5. Understand how the silhouette sign can aid in identification of pathology.
- 6. Appreciate the difference in findings of atelectasis and pneumonia.
- 7. Recognise pleural effusions and pneumothorax on a CXR.
- 8. Recognise the signs of COPD.
- 9. Recognise the signs of interstitial lung disease.
- 10. Understand the CXR features of benign versus malignant nodules.

#### Cardiothoracic imaging (CT, MRI, PET, Thallium)

- 1. Discuss the principles of computed tomography (CT) imaging
- 2. Discuss the role and limitations of CT in the management of cardiothoracic surgical conditions, including primary lung cancer and thoracic aortic disease
- 3. Discuss the role and limitations of FDG PET in the diagnosis and staging of primary lung cancer.
- 4. Understand the importance of tissue diagnosis in staging of primary lung to maintain benefit of doubt staging principles.
- 5. Demonstrate familiarity with the BTS and ESTS guidelines for the diagnosis and management of primary lung cancer.
- 6. Describe the role of imaging in measuring response to treatment (RECIST criteria) and in follow-up
- 7. Describe the indications for EUS in the staging of paraoesphageal lesions.
- 8. Discuss the principles of magnetic resonance imaging (MRI)
- 9. Describe the indications for MRI in the management of cardiothoracic surgical conditions, including cardiac and neurogenic tumours
- 10. Discuss the role and limitations of different imaging modalities available to demonstrate ischaemia and viability, including thallium scanning, MRI and stress echocardiography

#### Cardiac intensive care unit management

- 1. Understand the principles of monitoring a patient following cardiac surgery in the intensive care unit
- Describe the principles of inserting a pulmonary artery flotation (Swan Ganz) catheter and demonstrate an understanding of the derived measurements, including cardiac index, systemic vascular resistance and mixed venous saturations
- 3. Recognise the signs and understand the underlying causes of low cardiac output
- 4. Understand the principles of managing a patient with low cardiac output, including when to use which inotropes
- 5. Describe the indications and mechanism of action of an intra-aortic balloon
- 6. Describe the causes and management of a patient with right ventricular failure
- 7. Understand the criteria for extubation following cardiac surgery
- 8. Describe the aetiology and management of a patient with hypoxia following cardiac surgery
- 9. Understand the aetiology and management of a patient with oliguria following cardiac surgery
- 10. Describe the principles and indications of renal replacement therapy

#### **Re-exploration for bleeding & tamponade**

- 1. Recognise the signs of tamponade and bleeding following cardiac surgery
- 2. Define the aetiology of mediastinal bleeding following cardiac surgery, including surgical sites and coagulopathy
- 3. Understand the principles of assessing a patient with mediastinal bleeding to help distinguish surgical causes from



coagulopathy

- 4. Be able to interpret and understand the limitations of coagulation studies and thrombolelastogram (TEG)
- 5. Understand the importance and limitations of echocardiography in a patient with mediastinal bleeding or tamponade
- 6. Describe the principles of managing a patient with mediastinal bleeding or tamponade
- 7. Describe the indications and principles of using platelets, fresh frozen plasma, cryoprecipitate and packed red blood cells
- 8. Discuss the use of pharmacological agents, including tranexamic acid, aprotinin and desmopressin
- 9. Discuss the indications for re-sternotomy for bleeding or tamponade
- 10. Describe the operative steps performed when re-opening a patient for bleeding or tamponade

#### **Oxygenation and ventilation**

- 1. Understand the principles of jet ventilation during rigid bronchoscopy.
- 2. Identify types and sides on double lumen endobronchial tubes and endobronchial blockers
- 3. Demonstrate the principles of single lung ventilation.
- 4. Describe the pathophysiology of one-lung ventilation.
- 5. Describe strategies for management of hypoxia during single lung ventilation.
- 6. Describe the incidence, definition and management of Acute Lung Injury and ARDS.
- 7. Discuss the management of respiratory complications.
- 8. Understand the role of physiotherapy in reducing and treating postoperative respiratory complications.
- 9. Discuss the indications, technique and complications of tracheostomy.
- 10. Describe the indications and technique of minitracheostomy.

#### Thoracic post-operative management

- 11. Understand the importance of informed consent and communication in the anticipation of complications.
- 12. Discuss the assessment of postoperative bleeding and its management.
- 13. Describe the prevention, diagnosis of thromboembolic disease.
- 14. Describe the incidence and management of post-operative cardiac events.
- 15. Describe the definition, prevention, incidence, management and complications of post-operative air leak.
- 16. Describe the differential diagnosis of post-operative hypoxia.
- 17. Discuss the incidence, prevention and treatment of perioperative dysrhythmias.
- 18. Describe pulmonary complications following thoracic surgery.
- 19. Discuss the clinical and radiological features, differential diagnosis and management of bronchopleural fistula.
- 20. Discuss the optimisation of post-operative analgesia, incidence of post thoracotomy syndrome.